PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for food preservation and air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

If more than one type of refrigerant is required for Project, retain applicable paragraphs and subparagraphs below and indicate on Drawings which piping circuit requires which refrigerant.

A. Line Test Pressure for Refrigerant R-134a:

B. Line Test Pressure for Refrigerant R-404A:

C. Line Test Pressure for Refrigerant R-407C:

D. Line Test Pressure for Refrigerant R-410A:

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:

1. Thermostatic expansion valves.
2. Solenoid valves.
3. Hot-gas bypass valves.
4. Filter dryers.
5. Strainers.
6. Pressure-regulating valves.

B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

Retain subparagraph below to have Contractor size and design refrigeration piping.

1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."
1.8 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.9 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

Coordinate first two articles below with piping applications articles in Part 3. Materials included in this Section are examples listed in the 2000 ASHRAE HANDBOOK - "HVAC Systems and Equipment," Chapter 41, "Pipe, Tubes, and Fittings."

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B) or ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Silver Solder: Cadmium-free high-silver alloy consisting of at least 45% silver.

E. Brazing Filler Metals: Phosphorus/copper/silver alloy consisting of 15% silver.

F. Flexible Connectors:

 2. End Connections: Socket ends.

 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.

 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).

 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:

 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.

 3. Operator: Rising stem and hand wheel.

 5. End Connections: Socket, union, or flanged.

B. Packed-Angle Valves:
1. Body and Bonnet: Forged brass or cast bronze.
2. Packing: Molded stem, back seating, and replaceable under pressure.
3. Operator: Rising stem.
5. Seal Cap: Forged-brass or valox hex cap.
6. End Connections: Socket, union, threaded, or flanged.

C. Check Valves:
1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
6. End Connections: Socket, union, threaded, or flanged.
7. Maximum Opening Pressure: 0.50 psig (3.4 kPa).

D. Service Valves:
1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

Solenoid valves in first paragraph and subparagraphs below are made normally closed and normally open. Normally closed are direct acting and pilot operated. Holding coils are available in several voltages.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and [24] [115] [208]-V ac coil.
F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 4. End Connections: Threaded.

G. Thermostatic Expansion Valves: Comply with ARI 750.
 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 5. Superheat: Adjustable.
 6. Reverse-flow option (for heat-pump applications).
 7. End Connections: Socket, flare, or threaded union.

H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 5. Seat: Polytetrafluoroethylene.
 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and [24] [115] [208]-V ac coil.

I. Straight-Type Strainers:
 2. Screen: 100-mesh stainless steel.
 3. End Connections: Socket or flare.

J. Angle-Type Strainers:
 1. Body: Forged brass or cast bronze.
 2. Drain Plug: Brass hex plug.
 3. Screen: 100-mesh monel.
 4. End Connections: Socket or flare.
K. Moisture/Liquid Indicators:

2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.

L. Replaceable-Core Filter Dryers: Comply with ARI 730.

1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.

M. Permanent Filter Dryers: Comply with ARI 730.

2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.

N. Mufflers:

2. End Connections: Socket or flare.
O. Receivers: Comply with ARI 495.

Retain first subparagraph below for receivers larger than 6 inches (150 mm).

1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
2. Comply with UL 207; listed and labeled by an NRTL.
4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
5. End Connections: Socket or threaded.

P. Liquid Accumulators: Comply with ARI 495.

2. End Connections: Socket or threaded.

2.3 REFRIGERANTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Atofina Chemicals, Inc.
2. DuPont Company; Fluorochemicals Div.
3. Honeywell, Inc.; Genetron Refrigerants.
4. INEOS Fluor Americas LLC.

B. ASHRAE 34, R-134a: Tetrafluoroethane.

C. ASHRAE 34, R-404A.

D. ASHRAE 34, R-407C: Difluoromethane/Pentafluoroethane/1,1,1,2-Tetrafluoroethane.

E. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

If more than one refrigerant is required for Project, retain appropriate refrigerant piping articles below and indicate refrigerant type for each piping line on Drawings.

3.1 PIPING APPLICATIONS

A. Suction Lines for Conventional Air-Conditioning Applications: Copper, Type L (B) or ACR, drawn-temper tubing and wrought-copper fittings with brazed or silver soldered joints.

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type L (B) or ACR, drawn-temper tubing and wrought-copper fittings with brazed or silver soldered joints.
C. Safety-Relief-Valve Discharge Piping: Copper, Type L (B) or ACR, drawn-temper tubing and wrought-copper fittings with brazed or silver soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

Delete first paragraph below if valves are specified in Division 23 Section "Packaged Compressor and Condenser Units."

A. Install diaphragm packless valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

Retain paragraph below only for systems that cannot be shut down for a short time to replace the filter dryer.

E. Install a full-sized, three-valve bypass around filter dryers.

Retain first paragraph below for solenoid valves on systems with multiple thermostatic expansion valves. Retain for hot-gas bypass valve if not integral to the valve.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.

1. Install valve so diaphragm case is warmer than bulb.

In first subparagraph below, verify proper location for bulb with valve manufacturer.

2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.

3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line in close proximity of the receiver outlet and at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:

Edit list below for equipment required for Project.
1. Solenoid valves.
2. Thermostatic expansion valves.
3. Hot-gas bypass valves.
4. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

Consult refrigeration equipment manufacturer to determine the need for a receiver.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Refer to Division 23 Section “Common Work Results for HVAC” for basic installation requirements.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

C. Install refrigerant piping according to ASHRAE 15.

D. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.

E. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

F. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

G. Install refrigerant piping in protective conduit where installed belowground.

H. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

I. Slope refrigerant piping as follows:

Refer to the ASHRAE HANDBOOK - "Refrigeration" for discussion of methods for managing oil entrainment in refrigerant gas and liquid.

1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Use double-suction riser for maximum compressor efficiencies if load variation is expected.

3. Install traps and double risers to entrain oil in vertical runs.

4. Liquid lines may be installed level.

J. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

K. Prior to brazing and soldering, fill piping with dry grade nitrogen. Continue to flow nitrogen through piping at a rate of 20 fpm while piping is being heated to prevent oxidation of inside of piping and fittings.

L. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

M. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

N. Install sleeves for piping penetrations of walls, ceilings, and floors.

O. Install sleeve seals for piping penetrations of concrete walls and slabs.

P. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

3.5 HANGERS AND SUPPORTS

Piping hangers and supports must accommodate expansion and contraction, vibration, dead load of piping and its contents, and seismic-bracing requirements.

A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Cushioned-clamp hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:

<table>
<thead>
<tr>
<th>Size</th>
<th>Maximum Span (mm)</th>
<th>Minimum Rod Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS 1/2 (DN 15)</td>
<td>60 inches (1500 mm)</td>
<td>1/4 inch (6.4 mm)</td>
</tr>
<tr>
<td>NPS 5/8 (DN 18)</td>
<td>60 inches (1500 mm)</td>
<td>1/4 inch (6.4 mm)</td>
</tr>
<tr>
<td>NPS 1 (DN 25)</td>
<td>72 inches (1800 mm)</td>
<td>1/4 inch (6.4 mm)</td>
</tr>
<tr>
<td>NPS 1-1/4 (DN 32)</td>
<td>96 inches (2400 mm)</td>
<td>3/8 inch (9.5 mm)</td>
</tr>
<tr>
<td>NPS 1-1/2 (DN 40)</td>
<td>96 inches (2400 mm)</td>
<td>3/8 inch (9.5 mm)</td>
</tr>
<tr>
<td>NPS 2 (DN 50)</td>
<td>96 inches (2400 mm)</td>
<td>3/8 inch (9.5 mm)</td>
</tr>
<tr>
<td>NPS 2-1/2 (DN 65)</td>
<td>108 inches (2700 mm)</td>
<td>3/8 inch (9.5 mm)</td>
</tr>
<tr>
<td>NPS 3 (DN 80)</td>
<td>10 feet (3 m)</td>
<td>3/8 inch (9.5 mm)</td>
</tr>
<tr>
<td>NPS 4 (DN 100)</td>
<td>12 feet (3.7 m)</td>
<td>1/2 inch (13 mm)</td>
</tr>
</tbody>
</table>

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure within 2% at the manifold gage throughout duration of test. Pressure test duration shall not be less than 4 hours.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.
e. At the request of the Owner’s Representative, the Contractor shall cut open the refrigerant piping for inspection during site visits to verify the use of dry nitrogen as indicated in Section 3.3 above. Up to 4 locations may be selected at random by the Owner’s Representative. If evidence of non-compliance is discovered the affected piping shall be removed until clean piping is confirmed. If significant contamination is encountered at more than 4 locations the entire system will be considered to be contaminated. All affected piping shall be replaced and/or repaired at the Contractor’s expense.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

Retain first paragraph below for adjustable thermostatic expansion valves.

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Verify that compressor oil level is correct.
 3. Open compressor suction and discharge valves.
 4. Open refrigerant valves except bypass valves that are used for other purposes.
 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300