SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

This Section includes requirements for the LEED Rating System. However, equipment specified in this Section may not qualify for LEED Rating System prerequisites and credits. Verify with manufacturers that the requirements for prerequisites and credits can be met. To achieve prerequisites and obtain credits, HVAC system design alternatives that do not include computer-room air conditioners may be required.

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

B. LEED Submittals:

1. Product Data for Credit EA 4: For refrigerants, documentation including printed statement that refrigerants are free of HCFCs.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

2. Wiring Diagrams: For power, signal, and control wiring.

D. Samples for Initial Selection: For units with factory-applied color finishes.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:

1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."

LEED-NC Prerequisite EQ 1 requires compliance with requirements in ASHRAE 62.1. In addition to establishing minimum ventilation rates, ASHRAE 62.1 includes requirements for controls, surfaces in contact with the airstream, particulate and gaseous filtration, humidification and dehumidification, drain-pan construction and connection, finned-tube coil selection and cleaning, and equipment access.

2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-Up."

LEED-NC Prerequisite EA 2 requires minimum efficiency equal to requirements in ASHRAE/IESNA 90.1.

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.7 COORDINATION

Retain first paragraph below if remote condensing units are located on grade; retain second paragraph if they are located on roof.

A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."

B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Fujitsu General America, Inc.
3. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
4. Mitsubishi Heavy Industries America, Inc.
5. SANYO North America Corporation; SANYO Fisher Company.
6. Trane; a business of American Standard companies.
7. YORK; a Johnson Controls company.
8. Daikin

2.2 INDOOR UNITS 5 TONS (18 kW) OR LESS

A. Concealed Evaporator-Fan Components:

1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
2. Insulation: Faced, glass-fiber duct liner.
4. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
5. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Wiring Terminations: Connect motor to chassis wiring with plug connection.

6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
7. Filters: Permanent, cleanable.
8. Condensate Drain Pans:
 a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 2) Depth: A minimum of 2 inches (50 mm) deep.
 b. Double-wall, galvanized-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 d. Pan-Top Surface Coating: Asphalctic waterproofing compound.
 e. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
B. Floor-Mounted, Evaporator-Fan Components:

1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect.
 a. Discharge Grille: Steel with surface-mounted frame.
 b. Insulation: Faced, glass-fiber duct liner.
 c. Drain Pans: Galvanized steel, with connection for drain; insulated.

2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.

3. Fan: Direct drive, centrifugal, with power-induced outside air.

4. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.

5. Air Filtration Section:

 LEED-NC Prerequisite EQ 1 requires compliance with ASHRAE 62.1, which requires a MERV rating of 6 or higher.

 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

 b. Disposable Panel Filters:
 1) Factory-fabricated, viscous-coated, flat-panel type.
 2) Thickness: 1 inch (25 mm).
 3) Arrestance according to ASHRAE 52.1: 80.
 4) Merv according to ASHRAE 52.2: 5.
 5) Media: Interlaced glass fibers sprayed with nonflammable adhesive and antimicrobial agent.
 6) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.

C. Wall-Mounted, Evaporator-Fan Components:

1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.

2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.

3. Fan: Direct drive, centrifugal.
4. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Enclosure Type: Totally enclosed, fan cooled.
 d. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 e. Mount unit-mounted disconnect switches on exterior of unit.

5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

6. Condensate Drain Pans:
 a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 2) Depth: A minimum of 1 inch (25 mm) deep.
 b. Double-wall, galvanized-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 1) Minimum Connection Size: NPS 1 (DN 25).
 Retain first subparagraph below for galvanized-steel drain pans; delete for stainless-steel drain pans.
 d. Pan-Top Surface Coating: Asphaltic waterproofing compound.

7. Air Filtration Section:
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
 b. Disposable Panel Filters:
 1) Factory-fabricated, viscous-coated, flat-panel type.
 2) Thickness: 1 inch (25 mm).
3) Arrestance according to ASHRAE 52.1: 80.
4) Merv according to ASHRAE 52.2: 5.
5) Media: Interlaced glass fibers sprayed with nonflammable adhesive and antimicrobial agent.
6) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.

2.3 OUTDOOR UNITS (5 TONS (18 kW) OR LESS)

A. Air-Cooled, Compressor-Condenser Components:

1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.

LEED Credit EA 4 awards a single point if all HVAC&R equipment has HCFC-free refrigerants. R-407C and R-410A are HCFC-free refrigerants.

b. Refrigerant Charge: R-407C or R-410A.
c. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.

3. Fan: Aluminum-propeller type, directly connected to motor.
5. Low Ambient Kit: Permits operation down to 45 deg F (7 deg C).

2.4 ACCESSORIES

A. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:

1. Compressor time delay.
2. 24-hour time control of system stop and start.
3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
4. Fan-speed selection including auto setting.

B. Automatic-reset timer to prevent rapid cycling of compressor.

C. Refrigerant Line Kits are not permitted except by special and specific approval of MSU Engineers and trades personnel. Refrigerant piping shall conform with all applicable MSU Standards in Division 23.

D. Drain Hose: For condensate.
LEED-NC Credit EA 5 requires continuous metering equipment for monitoring building energy consumption performance over time. Retain paragraph below if required to comply with requirements for this credit. Verify availability of control features with unit manufacturers.

E. Additional Monitoring:

1. Monitor constant and variable motor loads.
3. Monitor economizer cycle.
4. Monitor cooling load.
5. Monitor air distribution static pressure and ventilation air volumes.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base that is 4 inches (100 mm) larger, on each side, than unit. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete." Coordinate anchor installation with concrete base.

D. Install roof-mounted, compressor-condenser components on equipment supports specified in Division 07 Section "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

E. Install compressor-condenser components on restrained, spring isolators with a minimum static deflection of 1 inch (25 mm). See Division 23 Section "Vibration Controls for HVAC Piping and Equipment."

F. Install a check valve immediately off the drain pan to start the drain system with pumped drain off of an evaporator drain pan. The check valves shall be line size of pan drain. Install a float in the drain pan that shuts down the A/C unit in case of the pump malfunctioned.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.4 STARTUP SERVICE

A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126